Source code for compiam.melody.pitch_extraction.ftaresnet_carnatic

import os
import librosa
import numpy as np
from tqdm import tqdm

from compiam.exceptions import ModelNotTrainedError

# Shared functions with FTANetCarnatic for vocals
from compiam.utils.pitch import normalisation, resampling
from compiam.melody.pitch_extraction.ftanet_carnatic.pitch_processing import (
    est,
    std_normalize,
)
from compiam.melody.pitch_extraction.ftanet_carnatic.cfp import cfp_process

from compiam.io import write_csv
from compiam.utils import get_logger, WORKDIR
from compiam.utils.download import download_remote_model

logger = get_logger(__name__)


[docs] class FTAResNetCarnatic(object): """FTA-ResNet melody extraction tuned to Carnatic Music.""" def __init__( self, model_path=None, download_link=None, download_checksum=None, sample_rate=44100, gpu="-1", ): """FTA-Net melody extraction init method. :param model_path: path to file to the model weights. :param download_link: link to the remote pre-trained model. :param download_checksum: checksum of the model file. :param sample_rate: Sample rate to which the audio is sampled for extraction. """ ### IMPORTING OPTIONAL DEPENDENCIES try: global torch import torch global FTAnet from compiam.melody.pitch_extraction.ftaresnet_carnatic.model import FTAnet except: raise ImportError( "In order to use this tool you need to have torch installed. " "Install compIAM with torch support: pip install 'compiam[torch]'" ) ### ## Setting up GPU if specified self.gpu = gpu self.device = None self.select_gpu(gpu) self.model = self._build_model() self.sample_rate = sample_rate self.trained = False self.model_path = model_path self.download_link = download_link self.download_checksum = download_checksum if self.model_path is not None: self.load_model(self.model_path) self.sample_rate = sample_rate def _build_model(self): """Build the FTA-Net model.""" ftanet = FTAnet().to(self.device) ftanet.eval() return ftanet
[docs] def load_model(self, model_path): """Load pre-trained model weights.""" if not os.path.exists(model_path): self.download_model(model_path) # Downloading model weights ## Ensuring we can load the model for different torch versions ## -- (weights only might be deprecated) try: self.model.load_state_dict(torch.load(model_path, weights_only=True, map_location=self.device)) except: self.model.load_state_dict(torch.load(model_path, map_location=self.device)) self.model_path = model_path self.trained = True
[docs] def download_model(self, model_path=None, force_overwrite=False): """Download pre-trained model.""" download_path = ( os.sep + os.path.join(*model_path.split(os.sep)[:-2]) if model_path is not None else os.path.join(WORKDIR, "models", "melody", "ftaresnet_carnatic") ) # Creating model folder to store the weights if not os.path.exists(download_path): os.makedirs(download_path) download_remote_model( self.download_link, self.download_checksum, download_path, force_overwrite=force_overwrite, )
[docs] def predict( self, input_data, input_sr=44100, hop_size=441, time_frame=128, out_step=None, gpu="-1", ): """Extract melody from input_data. Implementation taken (and slightly adapted) from https://github.com/yushuai/FTANet-melodic. :param input_data: path to audio file or numpy array like audio signal. :param input_sr: sampling rate of the input array of data (if any). This variable is only relevant if the input is an array of data instead of a filepath. :param hop_size: hop size between frequency estimations. :param batch_size: batches of seconds that are passed through the model (defaulted to 5, increase if enough computational power, reduce if needed). :param out_step: particular time-step duration if needed at output :param gpu: Id of the available GPU to use (-1 by default, to run on CPU), use string: '0', '1', etc. :returns: a 2-D list with time-stamps and pitch values per timestamp. """ ## Setting up GPU if any if gpu != self.gpu: self.select_gpu(gpu) if self.trained is False: raise ModelNotTrainedError( """Model is not trained. Please load model before running inference! You can load the pre-trained instance with the load_model wrapper.""" ) # Loading and resampling audio if isinstance(input_data, str): if not os.path.exists(input_data): raise FileNotFoundError("Target audio not found.") audio, _ = librosa.load(input_data, sr=self.sample_rate) elif isinstance(input_data, np.ndarray): logger.warning( f"Resampling... (input sampling rate is assumed {input_sr}Hz, \ make sure this is correct and change input_sr otherwise)" ) audio = librosa.resample( input_data, orig_sr=input_sr, target_sr=self.sample_rate ) else: raise ValueError("Input must be path to audio signal or an audio array") audio_shape = audio.shape if len(audio_shape) > 1: audio_channels = min(audio_shape) if audio_channels == 1: audio = audio.flatten() else: audio = np.mean(audio, axis=np.argmin(audio_shape)) # Extracting pitch audio_len = len(audio) // hop_size with torch.no_grad(): prediction_pitch = torch.zeros(321, audio_len).to(self.device) for i in tqdm(range(0, audio_len, time_frame)): W, Cen_freq, _ = cfp_process( y=audio[i * hop_size : (i + time_frame) * hop_size + 1], sr=self.sample_rate, hop=hop_size, ) value = W.shape[-1] W = np.concatenate( (W, np.zeros((3, 320, 128 - W.shape[-1]))), axis=-1 ) # Padding W_norm = std_normalize(W) w = np.stack((W_norm, W_norm)) prediction_pitch[:, i : i + value] = self.model( torch.Tensor(w).to(self.device) )[0][0][0][:, :value] # Convert to Hz frame_time = hop_size / self.sample_rate y_hat = est( prediction_pitch.to("cpu"), Cen_freq, torch.linspace( 0, frame_time * ((audio_len // time_frame) * time_frame), ((audio_len // time_frame) * time_frame), ), ) # Filter low frequency values freqs = y_hat[:, 1] freqs[freqs < 50] = 0 # Format output TStamps = y_hat[:, 0] output = np.array([TStamps, freqs]).transpose() if out_step is not None: new_len = int((len(audio) / self.sample_rate) // out_step) output = resampling(output, new_len) return output return output
[docs] @staticmethod def normalise_pitch(pitch, tonic, bins_per_octave=120, max_value=4): """Normalise pitch given a tonic. :param pitch: a 2-D list with time-stamps and pitch values per timestamp. :param tonic: recording tonic to normalize the pitch to. :param bins_per_octave: number of frequency bins per octave. :param max_value: maximum value to clip the normalized pitch to. :returns: a 2-D list with time-stamps and normalised to a given tonic pitch values per timestamp. """ return normalisation( pitch, tonic, bins_per_octave=bins_per_octave, max_value=max_value )
[docs] @staticmethod def save_pitch(data, output_path): """Calling the write_csv function in compiam.io to write the output pitch curve in a file :param data: the data to write :param output_path: the path where the data is going to be stored :returns: None """ return write_csv(data, output_path)
[docs] def select_gpu(self, gpu="-1"): """Select the GPU to use for inference. :param gpu: Id of the available GPU to use (-1 by default, to run on CPU), use string: '0', '1', etc. :returns: None """ if int(gpu) == -1: self.device = torch.device("cpu") else: if torch.cuda.is_available(): self.device = torch.device("cuda:" + str(gpu)) elif torch.backends.mps.is_available(): self.device = torch.device("mps:" + str(gpu)) else: self.device = torch.device("cpu") logger.warning("No GPU available. Running on CPU.") self.gpu = gpu